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Abstract-An orthogonal collocation solution of the penetrating evaporation front model for finite one- 
dimensional slab geometry is presented. Instead of using the moving boundary tracking technique, the 
transformation method proposed by Liapis and Litchfield was employed. Numerical experiments indicate 
that this procedure is more efficient than the finite difference method. Results given by this model are in 

good agreement with experimental findings. 

INTRODUCTION 

Tm PENETRATING evaporation front model (PEFM), 
proposed originally in 1929, describing heat and mass 
transfer processes in capillary porous bodies during the 
falling drying rate period, has been studied, improved 
and verified experimentally by others, i.e. Luikov [ 1,2] 
and Szentgyorgyi [3]. 

Unfortunately, it is not easy to solve the equations 
of this model and it needs considerable mathematical 
skill or too much computational effort. 

For half-space geometry Gupta [4] published an 
approximate solution, and later Mikhailov [5] pre- 
sented an analytical exact solution. For finite slab 
geometry Szentgyiirgyi and Molnar [6] suggested a 
numerical procedure employing the moving boundary 
tracking technique (MBTT) combined with the finite 
difference method (FDM). 

In this paper the orthogonal collocation technique 
(OCT) will be used to calculate temperature and 
moisture content distributions provided by PEFM. 
The reader can find detailed information on this 
numerical method in the excellent book by Finlayson 
[8]. The method itself has already been applied to the 
moving boundary problem concerning freeze drying 
by Liapis and Litchfield [9]. 

It can be shown that OCT is very efficient for solving 
the more complex PEFM problem too. This method 
opens the way for economical and practical engin- 
eering applications of this model. 

PENETRATING EVAPORATION 
FRONT MODEL 

During the falling drying rate period, when the 
moisture content falls down below a critical level, u,,, 
the liquid transport is practically stopped. Conse- 
quently the phase change criterion, E, jumps up to 1 
discontinuously. A shock wave defined by the critical 

moisture content starts to penetrate into the wet 
material. If we suppose that behind this moving front 
the vaporization is so vigorous that no free liquid 
exists there, only bounded moisture content char- 
acterized by the equilibrium value, u,, depending on 
the state of drying gas, we get the PEFM, see Fig. 1. 
This physical model proved to be more realistic than 
the original Luikov model, especially for modelling 
drying of granular substances. 

The PEFM can be defined by the equations given 
below. 

Region I 
Because there is no liquid transport behind the 

evaporation front, the heat transport can be described 
as 

ar, a=T, 
dt=a1=. (1) 

The vapour diffusion process has a very small time 
constant, therefore a quasi-steady state approach may 
be used 

Region II 
Here the original Luikov model can be considered, 

namely 

(3) 

The boundary conditions are given below. 

(a) At z = 0 

a,(T,-T,) = 42 (5) 
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NOMENCLATURE 

a diffusivity [m” s- ‘1 & phase change criterion 
A,, &, elements of the collocation matrices G thickness of thejth finite element [m] 

A and A” q, p, (p, II/ dimensionless space coordinates 
6 4ch WI 5 position of the evaporation front [m] 
4, gij elements of the collocation matrices 1 conductivity, mass [kg m- ’ s- ‘1, heat 

BandB TWm - ’ “c- ‘1 
specific heat capacity p s kg-’ 'C- ‘1 

2(f) functions in the tem~rature profiles [“Cl 
Pst total density of solid [kg m- 3] 
d evaporation coefficient [s m- ‘1 

& diffusion coeflicient of vapour [m’ s- “1 V wetting coefficient. 
e!(t) functions in the moisture content profiles 
i specific enthalpy [W s kg- ‘1 
L thickness [m] 
M number of the inner collocation points in Subscripts 

Region I C convective 

N evaporation rate [kg m- 2 s- ‘1 cr critical value 

P pressure [N m-‘2] 
E 

gas 
r evaporation heat [W s kg- ‘1 thermal 
t time [s] 1 liquid 

T temperature rC or K] m mass 
F (T, + T&)/2 [RI S solid surface 
U moisture content [kg moisture~g dry W vapour 

solid] wb wet bulb 
x space coordinate [ml. g evaporation front 

0 initial value 
Greek symbols I, II properties in Regions I and II, 

% heat transfer coefficient w m- * “C- ‘1 respectively. 

@,, -Pwg) = 4 olwc -Pd (6) 
where 

m = VP,( (G - u,). (9) 

(b) At z = c. The mass balance for the evaporation At the front the moisture content remains constant, 
front gives (see Fig. 2) namely 

dt dun 
V&I - %) 2; = S&l -Jy- - f%vc. (7) 

%I = UC,. (10) 

The partial vapour pressure can be computed from 

Assuming that behind the front ui = u,, we get the tension curve relationship 

T=O L 

I -_--_ 
I 

<Cl 

I 

qs 
i r, 

~ 

f,-- Vapour E 

.- ---- 

‘G 

Vapour 

,‘*“‘” 

I 

(8) 

I=0 

I:( 

z=L 

logp,, = 2.7486+ &$, (11) 
c 

P,SO pwo 
US0 _._._.-. 

f 

i i 1 i i /fL +r 1 Reqio” i ApI 
__i_f% _- d-3 / 

“Cr l..__L i Region II -u, 

PIG. I. Penetrating evaporation front model. 



_x ar, 
1ar be iv 

t 
N we 

i t 
_-__-_----____ l _-----.“.“___I-- 

u,=o I; 
--__-----___IL t+d< -v-v---___--- 

%r 
t i t 

Ek %I 
“ar 

_x aTi %I 
H,, =? x,--- i, 

a2 

FIG. 2. Mass and heat balances far the moviag front. 

Because of the quasi-steady state approach for Region from equation (16) one can get at x = L 
I 

NW< = NW,. WI rMO,mtw (21) 

The heat balance for the evaporation front yields (see 
Fig. 2) 

considering equation (8) and that 

r = i,-i, 

one may get 

SOLUTION OF THE MODEL 

In order to ~~mmobilize’ the moving evaporation 
front, let us introduce two dimens~onlcss space vari- 
ables 

Using the transformation proposed by Liapis and 
(14) Litchfield [9], it can be written : 

for equation ( 1) 

for equation (3) 

(17) for equation (4) 

au,, l-4 dr dun a, -=---- ~ 
at L-r dt &$ + (L-Q’ 

Initiai co~~~f~~~~or #se ~v~~~rff?~o~~r~~~ model 
The falling drying rate period begins and the evap- 

oration front starts to penetrate at t = tcr, when 

64 a,) = rr,, * WI 

This equation defines the time point, from which the 
model is supposed to be valid. For f c tCto, one may 
use the standard Luikov model [lo]. Then at t = tCr 
we get 

au (2, G,) = Q(L - & t,r) (19) 

and 

TJ&l &J = T@---x, &). (20) 

The vetocity of the ~net~~io# front at I = tFT, can be 
calculated by ‘joining’ the two models for t = to_ Then 

a2uss 
x - 

&$’ ’ 
Cl< 4 < 1; (25) 

for equation (8) 

for equation (5) 

4 al-1 a,(T,-Ts) =: -.- -, r afi p = 0; (27) 

for equation (16) 

d< ;lll a~,, 1, ar, 
“;r;=L-_r&$--T-r?y) 

p= 1 and 4 = 0, (28) 
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In order to apply orthogonal collocation, let us intro- 
duce 

tj=l-4 and y=l-p. (29) 

The temperature and moisture content distribution 
can then be approximated by the following poly 
nomial functions : 

Region I 
‘++2 

T&,t) = c &j(t)rt’- ‘? 0 G q < 1 ; (30) 
j= I 

Region II 
‘4+1 

&I(@, t) = t: &&)ll/“@- ‘I (31) 
,= I 

N+I 

Our collocation equations are now : 

RegionI:at~=~j,j=2,3,...,M+1 

where 

T,,, = T, and TI,Mt2 = T, ; (34) 

We now have 2N+ MS- 1 differential equations, equa- 
tions (33), (35), (36) and (40) as well as five algebraic 
ones, equations (2), (6) (ll), (38) and (39). The 
unknown variables are: T,J, j = 2,. . . , Mf 1 ; T,,,( 
and u,,,~, i = 1,2, . . . , N; 5, T,, T,, pws, pws and N;YC. 

Equation (11) is nonlinear, therefore the following 
iteration procedure may be used to solve the algebraic 
equations : 

(a) guess T, ; 
(b) compute pwC from equation (11) ; 
(c} compute pwS from equation (6) 

(41) 

(d) considering equations (2), (6) and (12), compute 

NW< 

N,, = g(P,, -pwg) ; 

(e) compute r’ from equation (39) 

(42) 

&f 1 &I N+ 1 

Tit = m Nwcf L--5,=, 
~ 1 bf+ l,k%I,k 

I 

; (43) 

(f) compute T, from equation (38) 

RegionII:attj=tii,i=1,2 ,..., N (g) our guess for T, can be checked by equation 

dun i 
(40) 

;= 
dt - & $ ;$: A&U -e- & 1:; Bik %I‘ 

T. = 

(35) 

rm$ t ~‘5 i &+GK~ 
b t 

N+l (45) 
f36) 

where 

At t = t,.,, we can compute (&=,C, from equation (21), 
which is in collocation form 

T II,N+ I = TF and &t,N+ , = u,, . (37) rMe),=,” = x,(Tg- Ts)- $ Ii’ A,+ ,,i7;. (46) 

Boundaries 
I- I 

To start the computation with the penetrating front 
model, we have to calculate a penetration distance Co, 
which belongs to (l;‘)+,, and defined by equations 

(38) (41~(45). 

at$= l,i=N+l 

N =ms &I N+’ NUMERICAL STUDY 
we --- dt L_ < t_, N+ LkUKk CA (39) 

Let us illustrate the application of this modelling 
atJ/=landq=O;i=N+l,j=l and simulation procedure by the following example. 

dl 
1,, Ni2 AN+ ~,k TW 

The numerical data for the calculation are given in 

rmdi= -L-t k=, 
Table 1. 

Now, let us employ the one-point collocation in 
Iz, M+Z 

-t j’ & -&kr,,k. (40) 
both regions, A4 = N = 1. The profiles are approxi- 
mated by the following second-order polynomial 
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Table 1. Data used for numerical calculation 

T, = 45°C 
pws = 1538.37 N m-* 

r=2.382x106Wskgg’ 
c,=1980Wskg-’ “C-’ 
a = 10.5 W my2 ‘C-’ 
,’ = 6.2637 x lo-’ s m-’ 
e=O.l 

L = 0.045 m 

a, = 2.633 x IO-’ m* SK’ 
ah = 3.292 x lo-’ rn’ s-’ 
i,=0.93Wm-‘“C-’ 
I,=3.95x10-5kgm-‘s-’ 
u,, = 0.2 kg moisture/kg dry solid 
k, = -244 
k2 = -11.2 

p,,=900kgm-’ 
DI = D,/(R,?) = 4.1675 x lo-“‘s 
A, = 0.73 W m-’ ‘C-’ 
a, = 2.361 x lo-’ m* SK’ 
I,, = Ah 
al1 = ah 

v=l 

functions : 

~,@I, 0 = 4.1(t)+4,*(th+dr,s(t)t12, 0 6 rl G 1 (47) 

TH($, 0 = 4,,l(0+~u,z(0~* 

u,,($, 0 = ~II,I(r)+eIi,2(~)~2, 0 G I(/ G 1. (48) 

The collocation points can be seen on Fig. 3. The 

collocation equations are : 

at q2 = 0.5 

+~(82,r,+822r,,2+B,,T,); (49) 

at I++, = 0.4472 

dT,, 2 
---= -~$(A,,T I,,, +A,,T,) 

dt 

+ (LcII;)2 ~(~,,TI,,,+~12~~) 

a,b(B 

+ (L-O2 
I IWI,I +B,*%) (50) 

II~II,I +A,24 

+ (LT# ------~~II4I,l +Bl&). (51) 

Now, equations (43)-(45) have the following form : 

I 4 I I I 
z=L Z=< z=o 

/L=l p=o 
Cj=i +=o 

T/=0 r)=l 

q=o 9=l 

FIG. 3. Location of the collocation points in different coor- 
dinate systems. 

and 

T = “r 
e 

r,,,%+ 
-Az,T,,,, - ~(~,,T~,, +A”,3Ts dt L-r 

&,A 

5 
(54) 

At t = t,,, we may use the linear approximation to 

find T&J, namely 

TI,, (tcr) = P’s + T,)P. (55) 

Matrices A and 2 are given in Table 2. 
In Region I the temperature profile can be cal- 

culated as 

Tdtl, t) = TM+ WdO- JT,(t) - T,(Olrl 

+[2Tg(t)-4T,,,(t)+2T,o142, M = 1 (56) 

where the coefficients ~&~(t), i = 1,2, . . . , M+ 2 are 
determined by the equation system 

.u+* 

Cj(t) = T,(Vj, t) = 1 4,i(th- ‘9 

i= I 

j= 1,2 ) . . . ) M+2. (57) 

Computations were carried out with the standard 
Luikov model [lo] until u,(t) = u,, = 0.2. Then the 
penetrating evaporation front model was used. The 
results of these computations can be seen on Figs. 4- 
9. 

Table 2. Coefficients of collocation matrices [8] 

For Region I : 

For Region II : 

A= 
-1.118 1.118 -2.500 2.500 
-2.500 -2.500 2.500 
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FIG. 6. Vapour partial pressure history at the solid surface 
and at the moving front during the drying process. 
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FIG. 4. Temperature distributed. 

Figures 7 and 8 show close similarities to the solu- 
tion obtained for the half-space geametry [4,5]. 

Figure 9 shows, that the sorption isotherm model 
[‘?‘I, estimates of higher evaporation rate than the evap- 
oration front model and therefore somewhat lower 
wet material temperature. The main difference 
between the two models is in the predicted moisture 
content profiles. Figure IO compared with Fig. 7 in 
ref. ftl] indicates very good qualitative agreement 

FIO, 7. Position and velocity of the mating evap~~~~~ front 
VS time. 

0 0. I 02 ’ 
z fdmf 

FIG. 5. Moisture content d~s~r~but~o~. 

t th) 

Fro. 8. Te~~~ature history at the solid surface, -; 
and at the bottom of the slab, ---; and at the moving 

Front, 
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FIG. 9. Total evaporated moisture from 1 m2 solid surface vs 
drying time, computed on the basis of the two different 

models. 
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FIG. 10. Reciprocal values of the velocity of front movement 
vs front depth. 

between the results of the PEFM and experimental 
findings [Ill. 

CONCLUSIONS 

A penetrating evaporation front model was 
developed and solved for finite slab geometry. The 
orthogonal collocation technique provided a very 
simple and practical method to solve the mode1 equa- 
tions. Consequently, one does not need to employ un- 
necessary physical or geometrical simplifications, or 

special mathematical skill to solve the drying problem 
in the falling rate period. 

Comparing numerical results and experimental 
findings, even a few collocation points proved to be 
satisfactory for giving a good approximation. 

The method can be easily adapted to other geome- 
tries too [12]. 
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SOLUTION DU MODELE DE FRONT D’EVAPORATION MOBILE DANS UN MILIEU 
POREUX FIN1 PAR UNE METHODE DE COLLOCATION ORTHOGONALE 

R&sum~n presente une methode de collocation orthogonale pour traiter le modtle de front d’evapo- 
ration p&n&rant dans une geometric monodimensionnelle de couche. Au lieu d’utiliser la technique de 
front&e mobile, on a recours a la methode de transformation proposee par Liapis et Litchfield. Des 
essais numbriques montrent que cette procedure est plus efficace que la mtthode aux differences finies. Les 

resultats donnes par ce modele sont en bon accord avec les don&es exptrimentales. 

EIN MODELL MIT WANDERNDER VERDAMPFUNGSFRONT IN ENDLICHEN 
PORdSEN KORPERN-L&SUNG MIT DER ORTHOGONALEN KOLLOKATIONS- 

METHODE 

Zusammenf~g-Es wird eine orthogonale Kollokationsliisung des Modells der wandemden Ver- 
dampfungsfront in einer begrenzten eindimensionalen Scheibe vorgestellt. Anstatt die Abgleichmethode 
fur bewegte Berandungen zu benutzen, wurde die von Liapis und Litchfield vorgestellte Trans- 
formationsmethode benutzt. Numerische Experimente zeigen, daB diese Vorgehensweise aussichtsreicher ist 
als die Finite-Differenzen-Methode. Ergebnisse aufgrund dieses Modells stimmen gut mit experimentellen 

Daten iiberein. 
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Ol-IPEAEJIEHME ABMTEHkiR QPOHTA MCl-IAPEHMR &JIfl KOHEYHOR nOPMCTOti 
CPEAbI C I-IOMO~bIO METOAA OPTOI-OHAJIbHbIX KOJIJIOKAL(kifi 

AHUOTEUUI~-M~TOLIOM opToroHanbHbIX KOJUIOKauHii nonyseHo pelueHae 3a~lawi o ~EWK~IJJ~MC~ 

+poHTe wcnapeHkfn nnr nnocKoB nopsroii nnacTkiHbI. II~H peruewni wznonb30BancK MeTon,npenno- 

xeHHb6i JlaSianwcoM B Jhi-rr+innobf. YacneHHbre sKcnepahfeHTb1 noKa3ane,~~o npeanoxeHHan MeTo- 

LIUKa 6onee Y$@eKTHBHa,'ieM MeTOLl KOHe'fHbIX pa3HOCTekPe3yJIbTaTbI,nOJly'IeHHble C nOMOI4bkO STOfi 


